Academic Staff
Course Description
- Supervised learning (classification, prediction) and unsupervised learning (clustering, associations).
- Statistical models and Bayes rule
- Support vector machines
- Self-Organizing Maps (SOM)
- Principal Component Analysis (PCA)
- Clustering. K-means algorithm
- Reinforcement Learning
- Dimensionality reduction και Sparse Dictionary Learning
- Web or not, Content data mining
Bibliography
- Machine Learning and Data Mining: Methods and Applications Ryszad S. Michalski (Editor), Ivan Bratko (Editor), Miroslav Kubat (Editor) Publisher: Wiley, ISBN: 978-0-471-97199-3, 1998
- Data Mining: Practical Machine Learning Tools and Techniques, 3rd Edition Ian H. Witten; Eibe Frank; Mark A. Hall Publisher: Morgan Kaufmann, ISBN-13: 978-0-12-374856-0, 2011
- Machine Learning in Action Peter Harrington Publisher: Manning Publications, ISBN-10: 1-61729-018-1, 2012
- Building Machine Learning Systems with Python Willi Richert; Luis Pedro Coelho Publisher: Packt Publishing, ISBN-13: 978-1-78216-140-0, 2013